Overview of CryoSat Validation Activities: 2003 - 2006

Validation Context

he CryoSat system was designed by requiring that the measurement uncertainty at enf mission adds no more than 10% to the limit of total uncertainty imposed by natural ariability: -2 -2 -2

$$\overline{\sigma}_r^2 = \overline{\sigma}_n^2 + \overline{\sigma}_m^2$$

The CryoSat Science and Measurement Requirements.

Requirement	Arctic Sea Ice 10 ⁵ km ²	Ice Sheets 10 ⁴ km ²	Ice Sheets $13.8 \times 10^6 \text{ km}^2$
$\overline{\sigma}_r(\eta_r)$	3.5 cm yr ⁻¹ i.e.	8.3 cm yr ⁻¹ i.e.	$0.76 \text{ cm yr}^{-1} \text{ i.e. } (92 \text{ Gt yr}^{-1})$
$\overline{\sigma}_{m}$	1.6 cm yr ⁻¹	3.3 cm yr ⁻¹	0.17 cm ⁻¹

he purpose of validation is to quantify and verify the uncertainties in CryoSat productions in the surger of the second states of the s

he mission requirements of CryoSat place considerable demands on the nature and uantity of the independent measurements

esa

Mission Requirements Document (MRD): Scientific Objectives and Context of Miss *CryoSat Calibration and Validation Concept (CVP):* Provides evaluation of sources uncertainties and potential methods available to estimate them

Announcement of Opportunity (AO): Announcement of Opportunity in calibration, validation and retrieval for the CryoSat mission

Cryosat Validation and Retrieval Team (CVRT) Meetings: working meetings to plan calibration and validation experimental activities. Third meeting (*CVRT3*) planned in January 2004 to finalise planning

Cryosat Validation Implementation Plan (CVIP): draft plan of experimental activitie for the validation of CryoSat Products

Key Elements for CryoSat Validation Planning

Various sources of error requiring validation experiments identified in the *CryoSat Calibration and Validation Concept (CVP)*

- Time-varying penetration of electromagnetic wave (sea, land)
- Preferential sampling of large ice floes (sea)
- Snow loading and ice density (sea)
- Fluctuations in snowfall and near surface density (land)

• etc...

Aain guidelines from initial CVRT meetings

• Coordinated ground and aircraft experiments

bridge spatial scales from local in-situ measurements to satellite base products

• Repeated Experiments

time-variant errors in retrieved heights due to variations in snow cover over annual cycle

• Prelaunch Validation activities

Several coordinated ground and aircraft experiments have not previously been performed, new for prelaunch trials to validate experimental concept

Main tools for field experiments

rborne

228	AWI	Laser Scanner ASIRAS	H. Miller U. Nixdorf	D-CCE
eenair Twin ter	KMS	Laser Scanner D2P Radar altimeter ASIRAS	R. Forsberg	
3B	NASA	ATM Laser Scanner D2P Radar Altimeter	W. Krabill K. Raney	
oer Navaho	GSC	ALTM Laser Altimeter	M. Demuth	
VI Helicopter	AWI	EM Boom	C. Haas	

-Situ

esa

GPS, Neutron Probe, Coring, Coffee Can, gamma profiling, roughness profiling (Land) ore holes, ice/snow density, wetness, grain size, salinity, upward looking sonar (Sea)

Validation Activities Schedule

10	2					20	03						2004											2005																2	000	6				
Activity Name	J	F	м	A	М	J	J	A	S	0	N	D	J	FN	A A	A M	IJ	J	A	S	0	N	D	J	F	М	A	M	J	J	A :	s (A C	1 [ο.	JF	= N	M A		A]	ı J	A	s	0	N	D
Cryosat																																											1			
Mission														(Cry	osa	it L	aur	nch	1		2									-					-			T		-			F		
CVRT Meetings													▼															7																		
												_																																		
Arctic Land																																														
Devon Ice Cap															1					-																		•	•							
Greenland EGIG Line	<u></u>														•		•			-													- 238					•		•						
Austfonna Ice Cap															•																							•	•							
Arctic Sea Ice																																														
CryoVEx 2003 North Greenland			4																													•						-						•		
Bay of Bothnia					-																																		æ							
Antarctic Land Ice					80.052															30.05																										
Dronning Maud Land																	-		•			-						-		-			-			•										
Antarctic Penisula																					-								4														-			
Antarctic Sea Ice																																														
Weddell Sea (ISPOL)																																														
202																																					T									

Principal Arctic Validation Sites

Devon Ice Cap

- Snowfall fluctuation
- Surface Density
- Time-varying penetration

North Greenland

Snow loadingIce density

• Geometric and penetration

errors

Preferential sampling

EGIG Line • Snowfall fluctuation • Surface Density • Time-varying penetration Austfonna Ic • Snowfall fluct • Surface Densi

Fram StraitPrelaunch validation of experimental concept

• Snow loading and other validation objectives associated with sea ice

Bay of Bothnia • Geometric and penetration errors

Principal Antarctic Validation Sites

Weddel Sea

- Snow loading
- Ice density
- Preferential sampling

Dronning Maud Land

- Snowfall fluctuation
- Near surface density
- Time-varying penetration

Antarctic PeninsulaSnowfall fluctuationNear surface densityRetrieval errors

Cryovex 2003 Pre-launch Campaign

- Experiment dates: April 03 19, 2003
- Aims:
 - Collection of simultaneous, colocated airborne laser and radar altimeter data, helicopter borne ice thickness measured using electromagnetic probe and borehole data
 - Prelaunch validation of campaign concept to address Cryosat sea ice retrieval errors

Instrumentation

- AWI Polarstern icebreaker
- KMS Twin Otter aircraft
 - D2P radar altimeter
 - Scanning laser altimeter
- AWI Helicopter housed on Polarstern
 - Electromagnetic (EM) boom

Cryovex 2003: Flight Tracks

Cryovex 2003:Instrument Installation

Cryovex 2003:Ice Examples

ea ice

nd Ice

esa

Cryovex 2003: Coordinated EM Bird - Twin Otter flights

Cryovex 2003: Coordinated Airplane – Helicopter acquisition

Cryovex 2003: Initial Results for Colocation

Conclusions on Validation Activities

Draft Cryosat Validation Implementation Plan (CVIP) issued

- ➢ inputs provided by the AO Responses/CVRT meetings
- ➤ outlines coordinated validation strategy
- ➢ identifies common set of validation experiments agreed to by ESA and CVRT members
- ▶ plan to be finalised early 2004 at 3rd CVRT meeting
- \succ confirmation of national funding sought by end of 2003
- Pre-launch validation activities initiated
- ➢ feedback provided on feasibility of key elements of validation strategy (e.g. coordination of in-situ, helicopter, airborne and satellite acquisitions)
- \succ initial feedback on error estimation
- alidation experiments represent collaboration between ESA and yosphere scientific community