Precipitation Climatology of Polar Regions

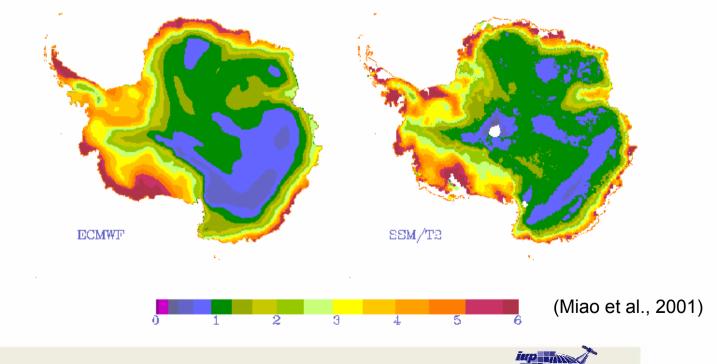
Georg Heygster and Christian Melsheimer Institute of Environmental Physics, University of Bremen

Overview

Precipitation Climatology in Polar Regions

- A. Ice sheet
- B. Sea Ice

- Precipitation one of the largest uncertainties in the mass budget of ice sheets
- Change in height determined by
 - Precipitation P
 - Melting S
 - Displacement
- Determine daily maps of P from
 - atmospheric model and
 - daily water vapor from water vapor sounder AMSU-B
 - Procedure developed by Miao et al. (2001)



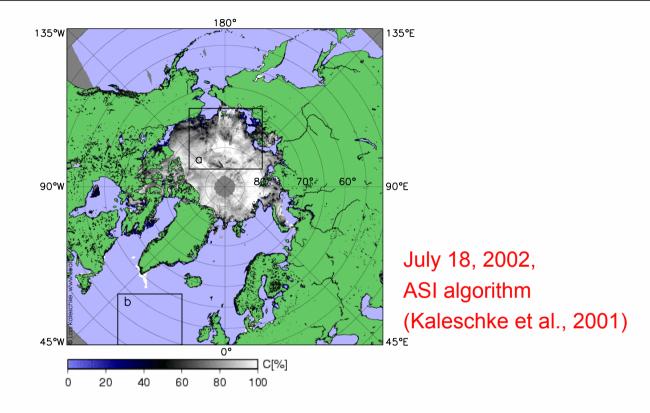
Total Water Vapour (TWV) from humidity sounders

- SSM/T2 and AMSU-B: 5 channels 183±1, ±3, ±7, 150, 89 GHz
- expressions In (T1-T2)/(T2-T3) ~ TWV

Daily Averaged TWV over Antarctica, Dec. 20, 1997

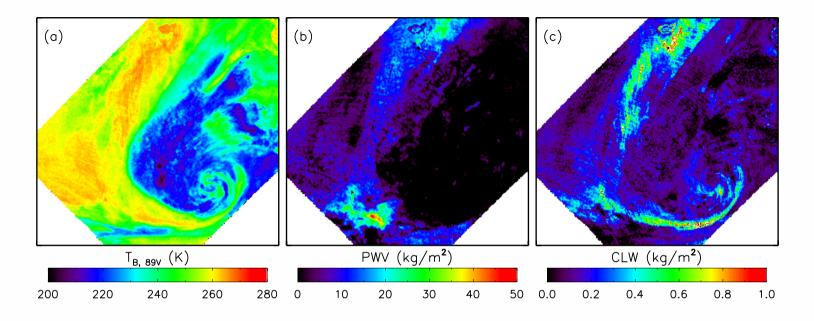
A. Ice Sheets (cnt'd)

- 3 ways to merge remote sensing and model data
 - Assimilation (NWP: IOMASA)
 - Nudging
 - Normalize model WV profiles of model with observed TWV
- Determine precipitation climatology and patterns of ice sheets
- Combine with
 - land ice models and
 - snow drift models
- Cross-check with thickness balance from CRYOSAT
- GLIMS (Global Land Ice Measurements from Space) contribution



- Similarly: Develop precipitation climatology and distribution over sea ice
- Include also LWP from SSM/I and AMSR
- Method proposed by Miao et al. (2000) using $R(f_1, f_2) = \ln \frac{T_v(f_1) - T_h(f_1)}{T_v(f_2) - T_h(f_2)}$ • *R*-factor

Regions of Interest



- a: Sea Ice
- b: Open Water

Applications: Sea Ice (region a)

- Cloud System of July 18, 2002
- CLW typical feature over meteorological front
- PWV low on rear side of low pressure system

- Validation of CLW difficult, Polarstern campaign with microwave radiometer?
- Assimilate precipitation into sea ice model
- Goal: Evaluate meteoric part of sea ice

Conclusions

- Combine atmospheric remote sensing data with atmospheric models
- Ice sheets:
 - Cross-validate ice thickness,
 - establish budget of components
- Sea ice:
 - Quantify meteoric part of sea ice

• Radiation received at sensor (Grody, 1986)

$$T_p(f) = T_s - T_s \left[1 - \varepsilon_p(f) \right] \exp\left[-2\tau(f) \sec \theta \right]$$

with $T_p(f)$ brightness temperature p polarization h, v f frequency T_S surface temperature $\tau(f)$ nadir opacity g zenith angle at surface

R factor

$$R(f_1, f_2) = \ln \frac{T_v(f_1) - T_h(f_1)}{T_v(f_2) - T_h(f_2)}$$

Retrieval Method: *R* factor (2)

R factor

$$R(f_1, f_2) = \ln \frac{T_v(f_1) - T_h(f_1)}{T_v(f_2) - T_h(f_2)}$$

 $= R_S(f_1, f_2) + \beta(f_1, f_2) \cdot \left[L + \alpha_{WL}(f_1, f_2) \cdot W\right] + R_d(f_1, f_2)$

with $R_S(f_1, f_2)$ surface contribution L liquid water path W precipitable water path $R_d(f_1, f_2)$ dry air contribution $\beta(f_2, f_1) = 2 \sec \theta \cdot \Delta \kappa_L$ $\alpha_{WL}(f_1, f_2) = \frac{\Delta \kappa_W(f_1, f_2)}{\Delta \kappa_L(f_1, f_2)}$ $\Delta \kappa_L(f_1, f_2)$ liquid water mass absorption

 $\Delta \kappa_L(f_1, f_2)$ liquid water mass absorption coefficient difference $\Delta \kappa_W(f_1, f_2)$ water vapor mass absorption coefficient difference

Universität Bremen

Retrieval method: frequency combinations

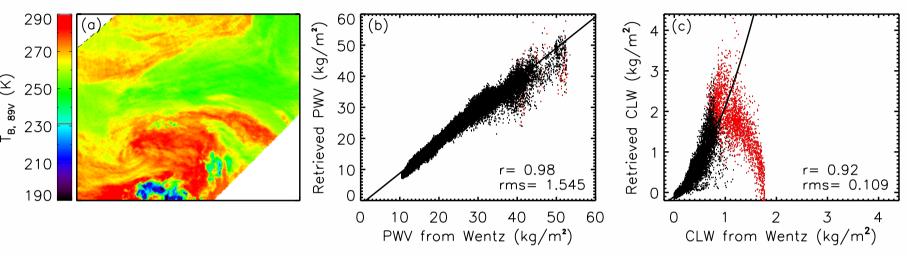
Recall: $R = R_S + \beta (L + \alpha_{WL} W) + R_d$

$$\beta(f_2, f_1) = 2 \sec \theta \cdot \Delta \kappa_L$$
$$\alpha_{WL}(f_1, f_2) = \frac{\Delta \kappa_W(f_1, f_2)}{\Delta \kappa_L(f_1, f_2)}$$

Desired:

- α small: large CLW contribution
- $-\beta$ large: small surface contribution
- Rs: small surface contribution

Select 2 frequency combinations: 2 eqs for 2 unkowns L, W.


SSM/I vs. AMSR characteristics

Frequency [GHz]		Resolution [km]	
SSM/I	AMSR(-E)	SSM/I	AMSR(-E)
-	6.9	-	71x41
-	10.7	-	46x25
19	18.7	69x43	25x15
22 V	23.8	50x50	23x14
37	36.5	37x29	14x8
85	89	15x13	6x4
-	50.3 V	-	12x6
-	52.8 V	-	12x6

All channels H + V polarisation if not indicated otherwise. Channels near 50 GHz on AMSR only.

- compare to results of Wentz of July 17, 2002
- exclude precipitating cases (*Tb* (36V) > 240K)
- PWV: correlation all data r = 0.98, below 35 kg/m2 stronger
- CLW: non-linear relation
- deviations potentially caused by scattering cloud ice

Conclusions

Retrieval of CLW and PWV over sea ice and open ocean

- appears feasible
- more knowledge about surface influence required
- concept of R factor may be noise sensitive, other approaches also considered

