

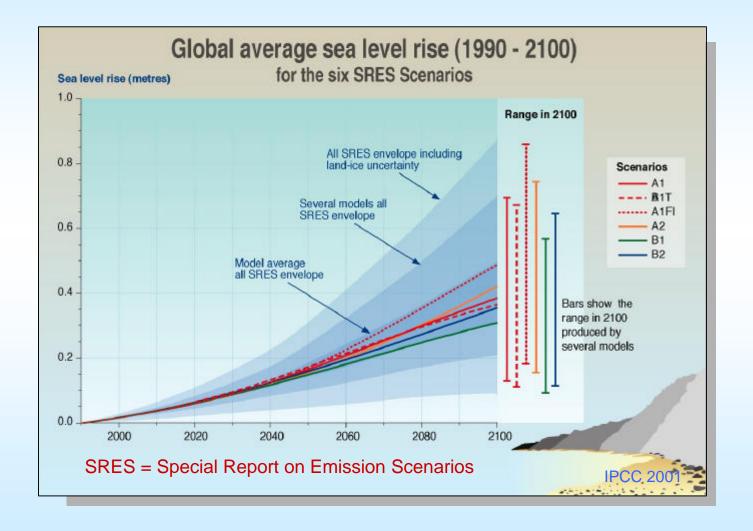
Geostatistische Verfahren zur Berechnung eines digitalen Höhenmodells durch die Verknüpfung von Radar-Altimeterdaten und SAR-Daten, angewendet auf das Lambert Gletscher / Amery Eisschelf System

Dipl. Geogr. Ralf Stosius

Universität Trier

Fachbereich VI: Geographie/Geowissenschaften

Abt.: Geomathematik


Meeresspiegelanstieg

Europa bei einem Meerespiegelansteig um 100m

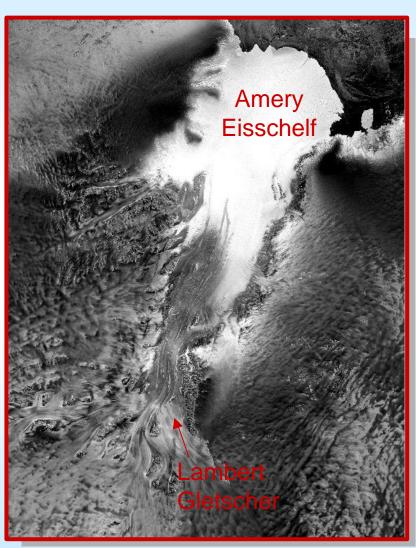
Meeresspiegelanstieg

Meeresspiegelanstieg

- Thermale Expansion
- Abschmelzen von Eismassen

Massenbilanzierung über Höhenmodelle oder numerische Modelle noch sehr unsicher

- Geologische Prozesse
- Anthropogene Prozesse


Verbesserungen durch CryoSat

- CryoSat verlängert die Radar-Altimeter Meßreihe
- CryoSat erweitert den Aufnahmebereich
- CryoSat liefert genauere und besser aufgelöste Daten

Genauere Daten erfordern genauere Auswerteverfahren

Das Lambert-Gletscher / Amery-Eisschelf - System

Lambert Gletscher / Amery Eisschelf

- Ausschnitt: 570 x 744 km (424.000 km²)
- aus RADARSAT-SAR Mosaik (1997)

Lambert Gletscher:

- Länge: 400 km
- Lage in geolog. Graben (68°)

Amery Eisschelf:

- Fläche: 69.000 km²
- Länge: 300 km
- Eiszufluß aus Eisströmen: 29,7 Gt/a

ERS-2 Altimeterdaten

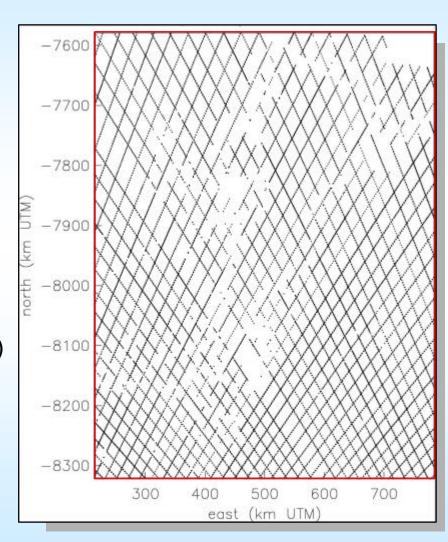
Ausschnitt:

UTM (Zone 42), 01.08. - 31.10. 1997

Datenquelle:

NASA/GSFC (retracking, slope corr.) Höhe bzgl. WGS84

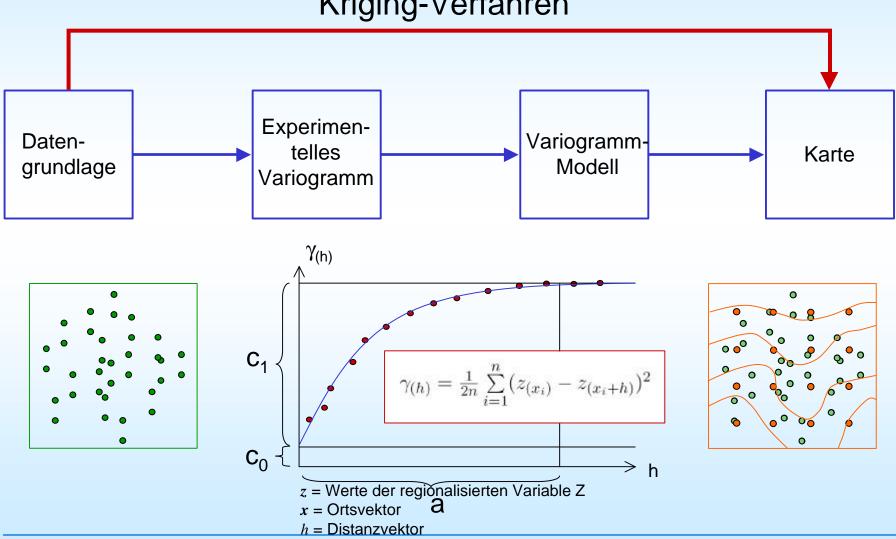
Auflösung:


~ 330 m entlang der Orbits 35d Wiederholungs-Zyklen

Datenlücken:

- Ozean Modus Daten (im Nordosten)
- 15 25 km zwischen den Orbits
- Trackingfehler bei Diskontinuitäten

Genauigkeit:


- < 10 cm (Schelfeis, GPS-Vergleich)
- < 10-20 m sonst

Räumliche Interpolation: Kriging

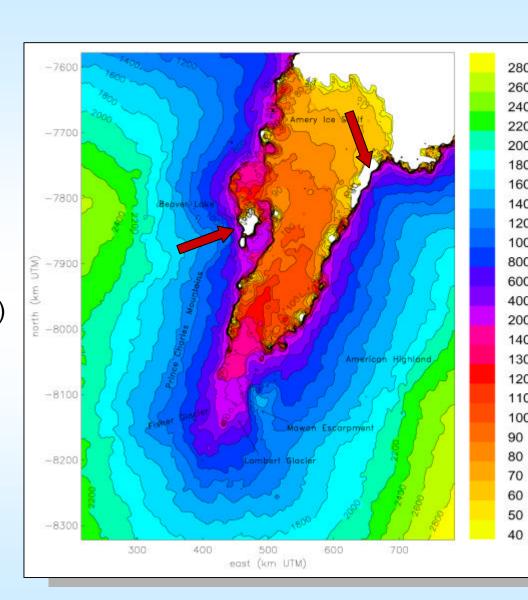
Kriging-Verfahren

Ordinary Kriging

Daten:

ERS-2, 1.8. – 30.10. 1997

Auflösung des Höhenmodells:

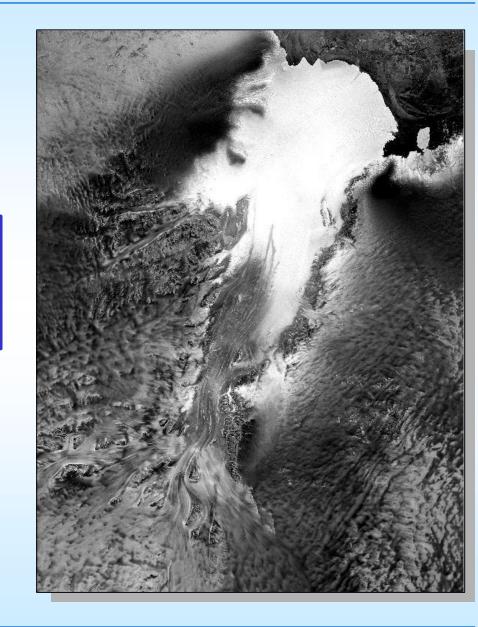

3000 m

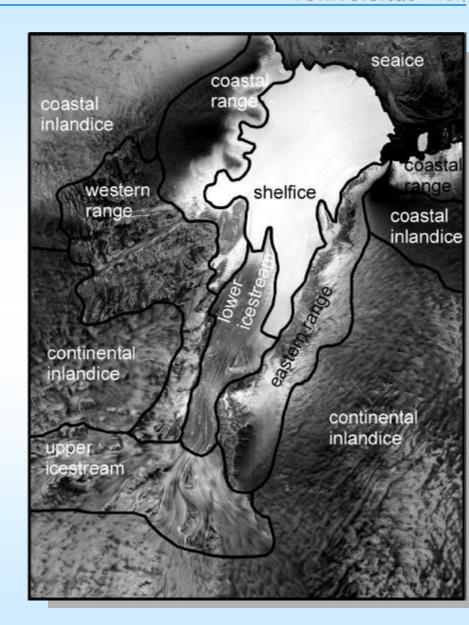
Variogrammodell:

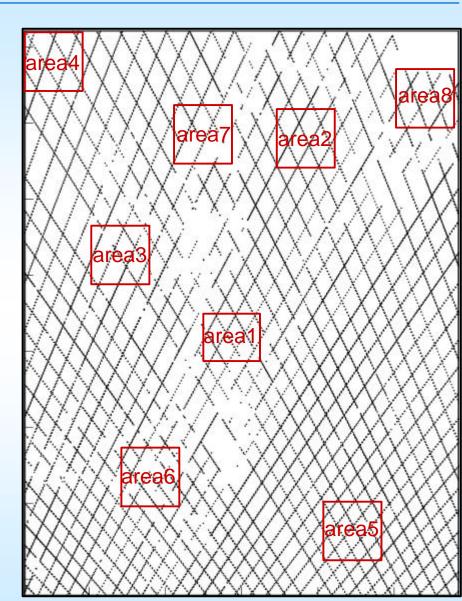
Gauss ($c_0 = 25$, $c_1 = 18$, a = 16000)

Interpolationsfehler:

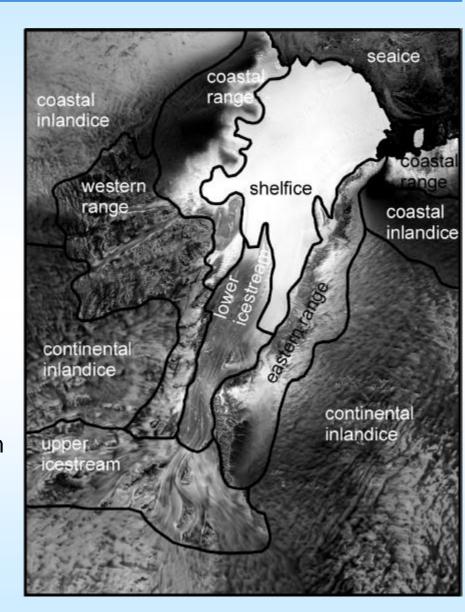
Am abrupten Übergang vom Eisschelf zum Inlandeis aufgrund von Datenlücken


Unterschiedliche morphologische Einheiten


Es gibt kein Variogramm, das die räumliche Struktur aller morphologischen Einheiten repräsentiert.


Stratifiziertes Kriging (Kriging within Strata)

1. Aufteilung in homogene Regionen



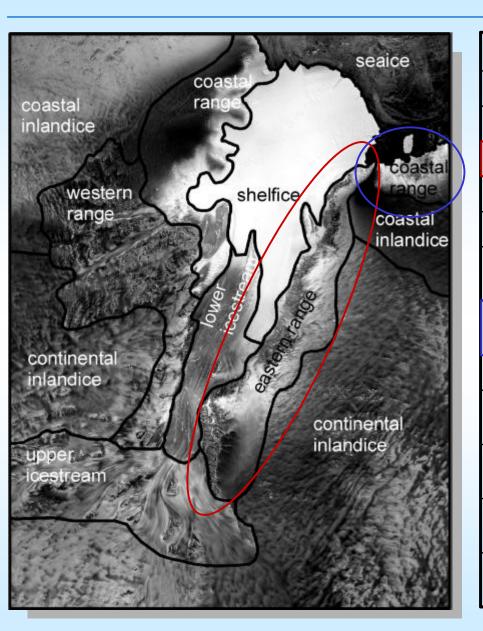
- 1. Aufteilung in homogene Regionen
- Ausweisung charakteristischer Teilgebiete (areas) innerhalb der Regionen
- Berechung von Variogrammen für die den areas zugehörigen Altimeterdaten

- 1. Aufteilung in homogene Regionen
- Ausweisung charakteristischer Teilgebiete (areas) innerhalb der Regionen
- Berechung von Variogrammen für die den areas zugehörigen Altimeterdaten
- Regionen mit ähnlichen Strukturen werden mit dem selben Variogramm verknüpft
- 5. Ordinary Kriging in den einzelnen Regionen

Interpolationsfehler:

- 1. Am abrupten Übergang von Eisschelf zum Inlandeis aufgrund von Datenlücken
- 2. Die Grenzen zwischen den Regionen werden alle als Diskontinuität behandelt
- 3. Randeffekt an den Regionsgrenzen, da dort weniger Punkte bei der Interpolation eingehen

Stratifiziertes Kriging mit kontinuierlichen Übergängen


Kreuzvalidierung

Mittlerer Fehler (ME):

$$ME = \frac{1}{n} \sum_{i=1}^{n} [z(x_i) - z^*(x_i)]$$

ME – Ordinary Kriging (ME_OK) > ME – Kriging within Strata (ME_KWS)

Region	ME_OK [cm]	ME_KWS [cm]
seaice	-30,73	-5,43
shelfice	-4,36	0,47
eastern range	16,78	23,66
lower icestream	-136,79	-0,81
upper icestream	8,18	4,43
coastal range (west)	34,42	-2,03
coastal range (east)	-42,91	-48,05
western range	69,61	-1,75
coastal inlandice (west)	2,52	0,67
coastal inlandice (east)	57,03	0,03
continental inlandice (west)	15,38	0,28
continental inlandice (east)	9,48	0,37

Region	ME_OK [cm]	ME_KWS [cm]
seaice	-30,73	-5,43
shelfice	-4,36	0,47
eastern range	16,78	23,66
lower icestream	-136,79	-0,81
upper icestream	8,18	4,43
coastal range (west)	34,42	-2,03
coastal range (east)	-42,91	-48,05
western range	69,61	-1,75
coastal inlandice (west)	2,52	0,67
coastal inlandice (east)	57,03	0,03
continental inlandice (west)	15,38	0,28
continental inlandice (east)	9,48	0,37

Stratifiziertes Kriging für CryoSat-Daten

- Die hohe Datendichte der CryoSat-Daten wird ausgenutzt.
- Sekundäre Informationen können integriert werden.
- Die räumliche Struktur wird regional detailliert erfasst.
- Stratifiziertes Kriging liefert genauere digitale Höhenmodelle.

Stratifiziertes Kriging eignet sich sehr gut für die Erstellung digitaler Höhenmodelle als CryoSat-Level3 Produkt.

