Recent Advances In Ice Altimetry & Implications for CryoSat

Prof. Duncan Wingham

New generation of Ice Sheet Models

Pine Island: Internal or External Dynamics?

decrease drag coefficient by 10%

whole ice stream (red), just main trunk (blue) and just steep section (green)

local thinning rates of ~ 1 m yr⁻¹generated throughout

changes in steep section propagate ~ 110 km upstream of grounding line

Arctic Sea Ice Change 1992-1998

Comparison of satellite and submarine thickness measurements '93 to '97

Laxon *et al., Nature*, 2003

ERS reveals highly variable pattern of Arctic ice change

First Synoptic Observations of Arctic Sea Ice Thickness and Interannual Variability

Mean thickness

Laxon et al., Nature, 2003

New generation of sea ice models

Satellite imagery shows sea ice mechanics to be highly anisotropic and dominated by fractures (leads)

Deformation mostly occurs in thinner and weaker leads

Under deformation leads rotate, widen, narrow and close.

Ocean warming reaches the Antarctic?

Shepherd & Wingham, Science, 2003

Secular thinning preceded collapse of Larsen Ice Shelf

Implications for CryoSat: Sampling & Coverage

ERS sea ice sampling density

ERS coverage

CryoSat Measurement Concept

SIRAL 'SARIn' Operational Mode

CryoSat Orbit Selection

Implication of Mission Constraints: Mode Use

Implications for CryoSat: Validation

ERS reveals highly variable pattern of Arctic ice change

WAIS thinning is dynamically linked

Implications for CryoSat: Magnitude, Spatial and Temporal Scales & Geographic Distribution of Errors

Example: Level 2 Land ice geometric and penetration model error

Antarctica ERS elevation change covariance

- ~ 2 cm yr⁻¹ at 10⁴ km²
- Annual cycle, maximum range Spring-Autumi
- Dominated by Level 1b error at ~ 1 km²
- Distinction between wet and dry firn

Implications for CryoSat: Conceptual Validation Design

Example: Level 2 Sea ice geometric and penetration model error

- Assess practicality and identify missing capability *e.g.* ASIRAS.
- Identify and contact important groups and planning time-scales *e.g.* Alfred Wegener Institute; 2-3 year planning horizon for polar activity.
- Identify practical locations *e.g.* Arctic Ocean N. and W. of Greenland is accessible and gives access to strong ice concentration variations.
- Identify experimental complexity and novelty and assess need for pre-launch trials *e.g.* LARA (2002) and CryoVEx (2003) campaigns.
- Identify and implement requirements on ground-segment capability.

Implications for CryoSat: Validation Experiments

Implications for CryoSat: Validation & Data Respinning

